Semantic A-translations and Super-Consistency Entail Classical Cut Elimination
نویسندگان
چکیده
We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a semantic version of Friedman’s Atranslation, showing that it preserves the structure of pseudo-Heyting algebra, our semantic framework. Then we relate the interpretation of a theory in the A-translated algebra and its A-translation in the original algebra. This allows to show the stability of the super-consistency criterion and the cut elimination theorem.
منابع مشابه
Semantic A-translation and Super-consistency entail Classical Cut Elimination
We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a s...
متن کاملA Simple Proof That Super-Consistency Implies Cut Elimination
We give a simple and direct proof that super-consistency implies cut elimination in deduction modulo. This proof can be seen as a simplification of the proof that super-consistency implies proof normalization. It also takes ideas from the semantic proofs of cut elimination that proceed by proving the completeness of the cut free calculus. In particular, it gives a generalization, to all super-c...
متن کاملA Semantic Normalization Proof for System T
Semantics methods have been used to prove cut elimination theorems for a long time. It is only recently that they have been extended to prove strong normalization results. For instance using the notion of super-consistency that is a semantic criterion for theories expressed in deduction modulo implying strong normalization. However, the strong normalization of System T has always been reluctant...
متن کاملA Semantic Normalization Proof for Inductive Types
Semantics methods have been used to prove cut elimination theorems for a long time. It is only recently that they have been extended to prove strong normalization results. For instance using the notion of super-consistency that is a semantic criterion for theories expressed in deduction modulo implying strong normalization. However, the strong normalization of System T has always been reluctant...
متن کاملA Deconstruction of Non-deterministic Classical Cut Elimination
This paper shows how a symmetric and non-deterministic cut elimination procedure for a classical sequent calculus can be faithfully simulated using a non-deterministic choice operator to combine diierent`double-negation' translations of each cut. The resulting interpretation of classical proofs in a-calculus with non-deterministic choice leads to a simple proof of termination for cut elimination.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013